EEMD Independent Extraction for Mixing Features of Rotating Machinery Reconstructed in Phase Space

نویسندگان

  • Zaichao Ma
  • Guangrui Wen
  • Cheng Jiang
چکیده

Empirical Mode Decomposition (EMD), due to its adaptive decomposition property for the non-linear and non-stationary signals, has been widely used in vibration analyses for rotating machinery. However, EMD suffers from mode mixing, which is difficult to extract features independently. Although the improved EMD, well known as the ensemble EMD (EEMD), has been proposed, mode mixing is alleviated only to a certain degree. Moreover, EEMD needs to determine the amplitude of added noise. In this paper, we propose Phase Space Ensemble Empirical Mode Decomposition (PSEEMD) integrating Phase Space Reconstruction (PSR) and Manifold Learning (ML) for modifying EEMD. We also provide the principle and detailed procedure of PSEEMD, and the analyses on a simulation signal and an actual vibration signal derived from a rubbing rotor are performed. The results show that PSEEMD is more efficient and convenient than EEMD in extracting the mixing features from the investigated signal and in optimizing the amplitude of the necessary added noise. Additionally PSEEMD can extract the weak features interfered with a certain amount of noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition

The vibration based signal processing technique is one of the principal tools for diagnosing faults of rotating machinery. Empirical mode decomposition (EMD), as a time-frequency analysis technique, has been widely used to process vibration signals of rotating machinery. But it has the shortcoming of mode mixing in decomposing signals. To overcome this shortcoming, ensemble empirical mode decom...

متن کامل

Identification of Load Categories in Rotor System Based on Vibration Analysis

Rotating machinery is often subjected to variable loads during operation. Thus, monitoring and identifying different load types is important. Here, five typical load types have been qualitatively studied for a rotor system. A novel load category identification method for rotor system based on vibration signals is proposed. This method is a combination of ensemble empirical mode decomposition (E...

متن کامل

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

Fault Diagnosis for Rotating Machinery: A Method based on Image Processing

Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based...

متن کامل

Stagewise Modeling of Liquid-Liquid Extraction Column (RDC)

Stagewise forward mixing model considering coalescence and redispersion of drops was used to predict the performance of Rotating Disc Liquid-Liquid Extraction Contactors. Experimental data previously obtained in two RDC columns of 7.62cm diameter, 73.6cm height and 21.9cm diameter, 150cm height were used to evaluate the model predictions. Drop-side mass transfer coefficients were predicted appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015